Numerical Solutions of a Variable-Order Fractional Financial System

نویسندگان

  • Shichang Ma
  • Yufeng Xu
  • Wei Yue
چکیده

The numerical solution of a variable-order fractional financial system is calculated by using the Adams-Bashforth-Moulton method. The derivative is defined in the Caputo variable-order fractional sense. Numerical examples show that the Adams-Bashforth-Moulton method can be applied to solve such variable-order fractional differential equations simply and effectively. The convergent order of the method is also estimated numerically. Moreover, the stable equilibrium point, quasiperiodic trajectory, and chaotic attractor are found in the variable-order fractional financial system with proper order functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical approach for variable-order fractional unified chaotic systems with time-delay

This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...

متن کامل

The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications

In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...

متن کامل

A numerical method for discrete fractional--order chemostat model derived from nonstandard numerical scheme

‎In this paper‎, ‎the fractional--order form of three dimensional chemostat model with variable yields is introduced‎. ‎The stability analysis of this fractional system is discussed in detail‎. ‎In order to study the dynamic behaviours of the mentioned fractional system‎, ‎the well known nonstandard (NSFD) scheme is implemented‎. ‎The proposed NSFD scheme is compared with the forward Euler and ...

متن کامل

A finite difference technique for solving variable-order‎ ‎fractional integro-differential equations

‎In this article‎, we use a finite difference technique‎ ‎to solve variable-order fractional integro-differential equations‎ ‎(VOFIDEs‎, ‎for short)‎. ‎In these equations‎, ‎the variable-order fractional integration(VOFI) and‎ ‎variable-order fractional derivative (VOFD) are described in the‎ ‎Riemann-Liouville's and Caputo's sense,respectively‎. ‎Numerical experiments‎, ‎consisting of two exam...

متن کامل

Numerical Solution of Fractional Control System by Haar-wavelet Operational Matrix ‎Method

In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012